Mihaela Grigore
  • 👋About
  • 👩‍🏭Personal projects
    • Computer Vision | Deep Learning with Tensorflow & Keras (ResNet50, GPU training)
    • Computer Vision | Convolutional Neural Networks with PyTorch
    • Computer Vision | Facial Recognition with Keras, FaceNet, Inception, Siamese Networks
    • NLP | Topic modeling on tweets
    • NLP | Sentiment analysis of tweets: TextBlob, VADER and Flair
    • Time series | Exploration on Crypto price dataset
    • Data scraping | Social Media Scraping: Twitter Developer API for Academics
    • Data Scraping | Collecting historical tweets without Twitter API
  • ✍️Notes
    • Machine Learning in Production
      • Feature transforms
      • Feature selection
      • Data journey
    • NLP
      • Information Retrieval
    • Computer Vision
    • Time series
      • Stationarity
    • Data
      • Labeling
    • Python
      • ndarray slicing with index out of bounds
  • 📚Readings & other media
    • Computer Vision
      • Selection of research articles
    • NLP
      • Handwriting Text
      • Information Retrieval
      • Mono- / multilingual
      • Topic Modeling
      • Language Models
    • Time Series
    • Generative Adversarial Netoworks (GAN)
    • Python
      • Python basics
Powered by GitBook
On this page
  • Who I am
  • Work projects
  • Some of my personal projects

About

This is a place where I write about what I read and what I work on related to Machine Learning

NextPersonal projects

Last updated 3 years ago

Who I am

I am currently working in Machine Learning. I have a background in software engineering, research, entrepreneurship.

Formally trained as a software engineer, a programme where I spent 5 years coding various things (operating systems, websites, games, you name it - typical Computer Science track at a Polytechnics university). Spent a few more years afterwards as software developer.

Had the chance to pursue a Research MSc in Cognitive Science. After which I decided a PhD and academia is not the suitable environment for me. I co-founded a hardware company. It wasn't a unicorn, nor did we want it to be. We wanted a regular bootstrapped organic growth company.

Something was unfolding during these years and it looked impressive. AI was becoming bigger and bigger and I wanted to be a part of that. I returned to studies, to upskill: Maths, Statistics, Machine Learning, productionizing ML and the rest. Through a MSc program, a lot of self-study, personal projects and working in a company that does AI for insurance, I became a junior ML Engineer, but with a rich experience in other fields, which I believe constitutes an advantage.

NLP, Computer Vision, tabular data - I enjoy working on either.

Moreover, I choose work conditioned on the product having a benefit to society and the team to be good, passionate, dedicated and fun too.

In my spare time, I do 🚴, 🧗, ✈️, 🍝

| | |

Work projects

Natural Language Processing R&D

R&D work for building a search engine for the insurance domain (questions / answers system)

My work included reading recent literature (most important research papers and a few books along the way) on state of the art in Information Retrieval and developments in the past few years.

I used Transformer based models to build a search engine that would return answers to questions by looking through a corpus of insurance related text.

Computer Vision - production work

Choose, fine-tune and customize architecture of Deep Learning models for automatic processing of handwritten information in accident reports.

Created a software library for generating synthetic images that immitate human handwriting and automatically annotate each word with bounding boxes.

This allowed us to grow our training set from 3000 images to 300.000 images and train a model with near maximum accuracy on our word splitting task, which was integrated into the production pipeline for automated documents processing.

Some of my personal projects

👋
Computer Vision | Deep Learning with Tensorflow & Keras (ResNet50, GPU training)
Computer Vision | Convolutional Neural Networks with PyTorch
Computer Vision | Facial Recognition with Keras, FaceNet, Inception, Siamese Networks
NLP | Topic modeling on tweets
NLP | Sentiment analysis of tweets: TextBlob, VADER and Flair
Time series | Exploration on Crypto price dataset
Data scraping | Social Media Scraping: Twitter Developer API for Academics
Data Scraping | Collecting historical tweets without Twitter API
LinkedIn
GitHub
Kaggle
Twitter
My resume (pdf file)